Product Name
Chelerythrine chloride
Description
Chelerythrine chloride is a potent, cell-permeable inhibitor of protein kinase C, with an IC50 of 660 nM. Chelerythrine chloride inhibits the Bcl-XL-Bak BH3 peptide binding with IC50 of 1.5 μM and displaces Bax from Bcl-XL. Chelerythrine chloride induces apoptosis and autophagy.
Structural Formula
Chelerythrine chloride
Solubility
DMSO : 4.35 mg/mL(11.33 mM;Need ultrasonic)
Source
Plants >Papaveraceae > Chelidonium majus
Storage
4℃, sealed storage, away from moisture
Shipping
Room temperature in continental US; may vary elsewhere.
SMILES
C[N+]1=CC2=C(C(OC)=CC=C2C3=C1C4=CC5=C(OCO5)C=C4C=C3)OC.[Cl-]
In Vivo
Chelerythrine displays significant anti-inflammatory effects in experimentally induced mice endotoxic shock model in vivo through inhibition of LPS-induced tumor necrosis factor-alpha (TNF-α) level and nitric oxide (NO) production in serum. Chelerythrine chloride (5 mg/kg/day, i.p.) induces apoptosis of RCC cells without significant toxicity to mice. Chelerythrine Chloride treatment leads to a dose-dependent accumulation of p53.
In Vitro
Chelerythrine inhibits the BclXL-Bak BH3 peptide binding with IC50 of 1.5 μM and displaces Bax, a BH3-containing protein, from BclXL. Mammalian cells treated with Chelerythrine undergoes apoptosis with characteristic features that suggest involvement of the mitochondrial pathway. Chelerythrine treatment inhibits LPS-induced TNF-α level and NO production in LPS-induced murine peritoneal macrophages through selective inhibition of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) activation. Moreover, the effects of chelerythrine on NO and cytokine TNF-α production can possibly be explained by the role of p38 MAPK and ERK1/2 in the regulation of inflammatory mediators expression.