Detection of Calcium Signaling in Plant Cells

Detection of Calcium Signaling in Plant Cells

Ca2+, as an essential ion in cells, not only participates in maintaining cell structure and intracellular ionic balance but also acts as a second messenger to transmit various signals.Ca2+, as a second messenger, participates in the regulation of plant growth and development, and different biotic and abiotic stress signals can induce changes in intracellular Ca2+, and it has been found that abiotic stresses, such as freezing, drought, and high salinity, as well as biotic stresses from viruses and pathogens, can induce specific calcium signals in plant cells. As the storage site of intracellular Ca2+, organelles can not only form specific calcium signals, but also regulate the changes of cytoplasmic Ca2+ concentration through Ca2+ channels and Ca2+ transporter proteins, and then participate in the regulation of intracellular signaling.

Lifeasible's plant cell calcium signaling assays are tailored to the project's needs and the material's characteristics. Currently, we are using jellyfish luminescent proteins and fluorescent protein-based Ca2+ fluorescent indicators to detect cellular Ca2+ signaling in plant cell calcium signaling accurately.

Detection of Calcium Signaling in Plant Cells

What do we offer?

Real-time monitoring of changes in intracellular and extracellular Ca2+ concentrations is fundamental to studying calcium signaling. There are many methods for determining cellular calcium ions, which are mainly categorized into physical methods and fluorescent indicator assays. We currently mainly utilize fluorescent indicators to determine plant cellular calcium signals.

Fluorescent indicator assay. The use of some chemical molecules that can be specifically combined with calcium ions, these molecules and calcium ions specific binding, its chemical properties change, in a certain wavelength of excitation light can be issued at a specific wavelength of fluorescence, the strength of this fluorescence and the concentration of calcium ions in the solution showed a certain correlation, so the determination of fluorescence can be reflected by the strength of the concentration of calcium ions in the cell changes. At present, according to the chemical nature of the cellular calcium fluorescent indicator can be mainly divided into chemical fluorescent indicators based on calcium chelator EGTA synthesis and recombinant bioluminescent protein-based calcium indicators. In using fluorescent indicators to detect calcium signals in plant cells, we currently mainly use two Ca2+ fluorescent protein probes, jellyfish luminescent protein (aequorin) and recombinant fluorescent protein, to determine Ca2+ concentration.

Recombinant jellyfish luminescent protein is currently more widely used in determining plant cellular calcium signals. So far, JMP has been effectively used to determine the calcium signals in the cytoplasm of Arabidopsis thaliana, tobacco, soybean, and other plant cells when exposed to different external stimuli. In addition, the recombinant gene constructed from the Jellyfish Luminescent Protein (JLP) gene and the cell-specific localization signals and recombinantly expressed in the plant body not only can detect changes in cytoplasmic calcium ions but also can accurately localize to most of the subcellular structures, such as the nucleus, chloroplasts, the extracellular matrix, and other organelles, and then detect the changes in calcium ions in these organelles.

Significance of calcium signaling detection in plant cells

  • Reveal the cell signaling mechanism. Calcium ions act as important second messengers in cells and are involved in regulating various biological processes. By detecting calcium signaling, we can gain insight into the signaling mechanism in plant cells, including growth, development, and stress response.
  • Study of biological adaptations and stress responses. Plant cells have complex response mechanisms to environmental changes and stresses, in which calcium signaling plays a key role. By detecting changes in calcium signaling, we can reveal the physiological and biochemical adjustment process of plants under adaptive and stress conditions.
  • Guiding agricultural production. Understanding calcium signaling in plant cells is instructive for improving crop growth and stress resistance. Calcium signaling can be modulated to increase plant tolerance to adversity, improving agricultural yield and quality.
  • Drug development and genetic engineering. Calcium signaling plays a key role in many diseases and plant genetic engineering. A deeper understanding of calcium signaling can help in drug discovery and genetic engineering to achieve the goal of treating diseases or improving plant traits.

Our service workflow

Our services workflow

Lifeasible adopts appropriate assays according to customer requirements and experimental characteristics, which can efficiently and accurately realize the determination of calcium signaling in plant cells. In addition, we also provide other comprehensive plant assay services to meet your different needs. If you are interested in us, please feel free to contact us.

For research or industrial raw materials, not for personal medical use!
Online Inquiry